The mechanisms governing corpus luteum (CL) function in domestic dogs remain not fully elucidated. The upregulated expression of cyclooxygenase 2 and prostaglandin (PG) E2 synthase (PGES) at the beginning of the canine luteal phase indicated their luteotrophic roles, and the steroidogenic activity of PGE2 in the early canine CL has been confirmed in vitro. Recently, by applying a cyclooxygenase 2 (COX2)-specific inhibitor (firocoxib [Previcox]; Merial) from the day of ovulation until the midluteal phase, the luteotrophic effects of PGs have been shown in vivo. This is a follow-up study investigating the underlying endocrine mechanisms associated with the firocoxib-mediated effects on the canine CL. Experimental groups were formed with ovariohysterectomies performed on Days 5, 10, 20, or 30 of firocoxib treatments (10 mg/kg bw/24h; TGs = treated groups). Untreated dogs served as controls. A decrease of steroidogenic acute regulatory (STAR) protein expression was observed in TGs. The expression of PGE2 synthase was significantly suppressed in TGs 5 and 10, and both PGE2 and PGF2α levels were decreased in luteal homogenates, particularly from CL in TG 5. Similarly, expression of the prolactin receptor (PRLR) was diminished in TGs 5 and 20. The expression of PGE2 receptors PTGER2 (EP2) and PTGER4 (EP4), the PG- transporter (PGT), and 15-hydroxy PG dehydrogenase (HPGD) was not affected in TGs. Our results substantiate a direct luteotrophic role of PGs in the early canine CL, i.e., by upregulating the steroidogenic machinery. Additionally, the possibility of an indirect effect on PRL function arises from the increased prolactin receptor expression in response to PGE2 treatment in canine lutein cells observed in vitro.
Keywords: CL; Dog (Canis familiaris); Prostaglandin.
Copyright © 2015 Elsevier Inc. All rights reserved.