The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II (AngII) via its type 1 receptor, including anti-inflammatory, anti-oxidant, vasodilatory, and angiogenic effects, and the role of altered kinase-phosphatase signaling. Interactions of Mas with other receptors, including bradykinin receptors and AngII type 2 receptors are also considered. A more complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.