Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods.
Keywords: compressed sensing; compressed sensing RNAi; compressed sensing microarrays; metagenomics; recovery methods.