Developmentally regulated expression and expression strategies of Drosophila snoRNAs

Insect Biochem Mol Biol. 2015 Jun:61:69-78. doi: 10.1016/j.ibmb.2015.01.013. Epub 2015 Jan 29.

Abstract

Small nucleolar RNAs constitute a significant portion of the eukaryotic small ncRNA transcriptome and guide site-specific methylation or pseudouridylation of target RNAs. In addition, they can play diverse regulatory roles on gene expression, acting as precursors of smaller fragments able to modulate alternative splicing or operate as microRNAs. Defining their expression strategies and the full repertory of their biological functions is a critical, but still ongoing, process in most organisms. Considering that Drosophila melanogaster is one of the most advantageous model organism for genetic, functional and developmental studies, we analysed the whole genomic organization of its annotated snoRNAs - whose vast majority is known to be embedded in an intronic context - and show by GO term enrichment analysis that protein-coding genes involved in cell division and cytoskeleton organization are those mostly preferred as hosts. This finding was unexpected, and delineates an unpredicted link between snoRNA host genes and cell proliferation that might be of general relevance. We also defined by quantitative RT-PCR the expression of a representative subset of annotated specimens throughout the life cycle, providing a first overview on developmental profiling of the fly snoRNA transcriptome. We found that most of the tested specimens, rather than acting as housekeeping genes with uniform expression, exhibit dynamic developmental expression patterns; moreover, intronic snoRNAs harboured by the same host gene often exhibit distinct temporal profiles, indicating that they can be expressed uncoordinatedly. In addition to provide an updated outline of the fly snoRNA transcriptome, our data highlight that expression of these versatile ncRNAs can be finely regulated.

Keywords: Drosophila; Gene regulation; Genomic organization; ncRNA; snoRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / growth & development
  • Drosophila melanogaster / metabolism
  • Gene Expression Regulation, Developmental
  • Genome, Insect
  • Introns
  • MicroRNAs / genetics
  • MicroRNAs / metabolism
  • RNA, Small Nucleolar / genetics*
  • RNA, Small Nucleolar / metabolism
  • Transcriptome

Substances

  • MicroRNAs
  • RNA, Small Nucleolar