Through the RT-PCR and rapid amplification of cDNA ends, two complementary deoxyribonucleic acid (cDNA) clones encoding heat-shock cognate 70 (HSC70, designated Sp-HSC70) and inducible heat-shock protein 70 (HSP70, designated Sp-HSP70) were isolated from the liver of Prenant's schizothoracin (Schizothorax prenanti). The cDNAs were 2344- and 2292-bp in length and contained 1950- and 1932-bp open reading frames, encoded proteins of 649 and 643 amino acids, respectively. Amino acid sequence analysis indicated that both Sp-HSC70 and Sp-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (an ATP-binding site motif, a bipartite nuclear targeting signal), and a cytoplasmic characteristic motif EEVD. Homology analysis revealed that Sp-HSC70 and Sp-HSP70 shared 77.5% identity and Sp-HSC70 shared more than 81.1% identity with the known HSC70s of other vertebrates, while Sp-HSP70 shared more than 77.5 % identity with the known HSP70s of other vertebrates. Fluorescent real-time quantitative RT-PCR showed that Sp-HSC70 and Sp-HSP70 mRNAs were found in all tested tissues, including blood, brain, heart, liver, spleen, head kidney, white muscle, skin, gonad, hypophysis, red muscle, and gill. The Sp-HSC70 and Sp-HSP70 mRNA expression level in blood and head kidney displayed a significant increase in vibrio-challenged group with the bacterium Aeromonas hydrophila at 24 h post-infection compared to a control group. Temporally, there was a clear time-dependent expression pattern of Sp-HSC70 or Sp-HSP70 gene after bacterial challenge, and the expression of Sp-HSC70 and Sp-HSP70 mRNAs reached a maximum level at 12 and 6 h post-challenge, respectively. Both returned to control level after 7 × 24 h. The results suggest that Sp-HSC70 and Sp-HSP70 genes may play important roles in mediating the immune responses of A. hydrophila-related diseases in the Prenant's schizothoracin.