RNA editing generates post-transcriptional sequence changes that can be deduced from RNA-seq data, but detection typically requires matched genomic sequence or multiple related expression data sets. We developed the GIREMI tool (genome-independent identification of RNA editing by mutual information; https://www.ibp.ucla.edu/research/xiao/GIREMI.html) to predict adenosine-to-inosine editing accurately and sensitively from a single RNA-seq data set of modest sequencing depth. Using GIREMI on existing data, we observed tissue-specific and evolutionary patterns in editing sites in the human population.