Hsp27 Inhibition with OGX-427 Sensitizes Non-Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy

Mol Cancer Ther. 2015 May;14(5):1107-16. doi: 10.1158/1535-7163.MCT-14-0866. Epub 2015 Mar 4.

Abstract

Non-small cell lung cancer (NSCLC) is the most frequent cause of death from cancer worldwide. Despite the availability of active chemotherapy regimens and EGFR tyrosine kinase inhibitors, all advanced patients develop recurrent disease after first-line therapy. Although Hsp27 is a stress-induced chaperone that promotes acquired resistance in several cancers, its relationship to treatment resistance in NSCLC has not been defined. Understanding adaptive responses of acquired resistance will help guide new strategies to control NSCLC. Hsp27 levels were evaluated in an HCC827 erlotinib-resistant-derived cell line (HCC-827Resistant), and sensitivity to erlotinib was examined in Hsp27-overexpressing A549 cells. The role of Hsp27 in both erlotinib and cytotoxic treatment resistance was evaluated in HCC-827 and A549 NSCLC cells using the Hsp27 antisense drug OGX-427. The effect of OGX-427 in combination with erlotinib was also assessed in mice bearing A549 xenografts. Hsp27 is induced by erlotinib and protects NSCLC cells from treatment-induced apoptosis, whereas OGX-427 sensitizes NSCLC cells to erlotinib. Interestingly, increased resistance to erlotinib was observed when Hsp27 was increased either in HCC827 erlotinib-resistant or overexpressing A549 cells. Combining OGX-427 with erlotinib significantly enhanced antitumor effects in vitro and delayed A549 xenograft growth in vivo. OGX-427 also significantly enhanced the activity of cytotoxic drugs used for NSCLC. These data indicate that treatment-induced Hsp27 contributes to the development of resistance, and provides preclinical proof-of-principle that inhibition of stress adaptive pathways mediated by Hsp27 enhances the activity of erlotinib and chemotherapeutics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Combined Chemotherapy Protocols
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / drug effects
  • Drug Synergism
  • Erlotinib Hydrochloride / administration & dosage*
  • Erlotinib Hydrochloride / pharmacology
  • Gene Expression Regulation, Neoplastic / drug effects
  • HSP27 Heat-Shock Proteins / antagonists & inhibitors
  • HSP27 Heat-Shock Proteins / genetics
  • HSP27 Heat-Shock Proteins / metabolism*
  • Heat-Shock Proteins
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Male
  • Mice
  • Molecular Chaperones
  • Oligonucleotides / administration & dosage*
  • Oligonucleotides / pharmacology
  • Xenograft Model Antitumor Assays

Substances

  • Antineoplastic Agents
  • HSP27 Heat-Shock Proteins
  • HSPB1 protein, human
  • Heat-Shock Proteins
  • Molecular Chaperones
  • Oligonucleotides
  • Erlotinib Hydrochloride
  • apatorsen