Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

Int J Biometeorol. 2015 Nov;59(11):1701-10. doi: 10.1007/s00484-015-0978-x. Epub 2015 Mar 22.

Abstract

In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

Keywords: Air gap; Clothing model; Contact area; Dry heat transfer; Natural convection.

MeSH terms

  • Air
  • Clothing*
  • Convection
  • Hot Temperature
  • Models, Theoretical*