Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder affecting both children and adults. One of the candidate genes for ADHD is DAT1, encoding the dopamine transporter. In an attempt to clarify its mode of action, we assessed brain activity during the reward anticipation phase of the Monetary Incentive Delay (MID) task in a functional MRI paradigm in 87 adult participants with ADHD and 77 controls (average age 36.5 years). The MID task activates the ventral striatum, where DAT1 is most highly expressed. A previous analysis based on standard statistical techniques did not show any significant dependencies between a variant in the DAT1 gene and brain activation [Hoogman et al. (2013); Neuropsychopharm 23:469-478]. Here, we used an alternative method for analyzing the data, that is, causal modeling. The Bayesian Constraint-based Causal Discovery (BCCD) algorithm [Claassen and Heskes (2012); Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence] is able to find direct and indirect dependencies between variables, determines the strength of the dependencies, and provides a graphical visualization to interpret the results. Through BCCD one gets an opportunity to consider several variables together and to infer causal relations between them. Application of the BCCD algorithm confirmed that there is no evidence of a direct link between DAT1 genetic variability and brain activation, but suggested an indirect link mediated through inattention symptoms and diagnostic status of ADHD. Our finding of an indirect link of DAT1 with striatal activity during reward anticipation might explain existing discrepancies in the current literature. Further experiments should confirm this hypothesis. © 2015 Wiley Periodicals, Inc.
Keywords: ADHD; Causal discovery; dopamine transporter; reward anticipation.
© 2015 Wiley Periodicals, Inc.