Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis

Cochrane Database Syst Rev. 2015 Apr 10;2015(4):CD010298. doi: 10.1002/14651858.CD010298.pub2.

Abstract

Background: Myelofibrosis is a bone marrow disorder characterized by excessive production of reticulin and collagen fiber deposition caused by hematological and non-hematological disorders. The prognosis of myelofibrosis is poor and treatment is mainly palliative. Janus kinase inhibitors are a novel strategy to treat people with myelofibrosis.

Objectives: To determine the clinical benefits and harms of Janus kinase-1 and Janus kinase-2 inhibitors for treating myelofibrosis secondary to hematological or non-hematological conditions.

Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library 2014, Issue 11), Ovid MEDLINE (from 1946 to 13 November 2014), EMBASE (from 1980 to 12 January 2013), and LILACS (from 1982 to 20 November 2014). We searched WHO International Clinical Trials Registry Platform and The metaRegister of Controlled Trials. We also searched for conference proceedings of the American Society of Hematology (from 2009 to October 2013), European Hematology Association (from 2009 to October 2013), American Society of Clinical Oncology (from 2009 to October 2013), and European Society of Medical Oncology (from 2009 to October 2013). We included searches in FDA, European Medicines Agency, and Epistemonikos. We handsearched the references of all identified included trials, and relevant review articles. We did not apply any language restrictions. Two review authors independently screened search results.

Selection criteria: We included randomized clinical trials comparing Janus kinase-1 and Janus kinase-2 inhibitors with placebo or other treatments. Both previously treated and treatment naive patients were included.

Data collection and analysis: We used the hazard ratio (HR) and 95% confidence interval (95% CI) for overall survival, progression-free survival and leukemia-free survival, risk ratio (RR) and 95% CI for reduction in spleen size and adverse events binary data, and standardized mean differences (SMD) and 95% CI for continuous data (health-related quality of life). Two review authors independently extracted data and assessed the risk of bias of included trials. Primary outcomes were overall survival, progression-free survival and adverse events.

Main results: We included two trials involving 528 participants, comparing ruxolitinib with placebo or best available therapy (BAT). As the two included trials had different comparators we did not pool the data. The confidence in the results estimates of these trials was low due to the bias in their design, and their limited sample sizes that resulted in imprecise results.There is low quality evidence for the effect of ruxolitinib on survival when compared with placebo at 51 weeks of follow-up (HR 0.51, 95% CI 0.27 to 0.98) and compared with BAT at 48 weeks of follow-up (HR 0.70, 95% CI 0.20 to 2.47). Similarly there was very low quality evidence for the effect of ruxolitinib on progression free survival compared with BAT (HR 0.81, 95% CI 0.47 to 1.39).There is low quality evidence for the effect of ruxolitinib in terms of quality of life. Compared with placebo, the drug achieved a greater proportion of patients with a significant reduction of symptom scores (RR 8.82, 95% CI 4.40 to 17.69), and treated patients with ruxolitinib obtained greater MFSAF scores at the end of follow-up (MD -87.90, 95% CI -139.58 to -36.22). An additional trial showed significant differences in EORTC QLQ-C30 scores when compared ruxolitinib with best available therapy (MD 7.60, 95% CI 0.35 to 14.85).The effect of ruxolitinib on reduction in the spleen size of participants compared with placebo or BAT was uncertain (versus placebo: RR 64.58, 95% CI 9.08 to 459.56, low quality evidence; versus BAT: RR 41.78, 95% CI 2.61 to 669.75, low quality evidence).There is low quality evidence for the effect of the drug compared with placebo on anemia (RR 2.35, 95% CI 1.62 to 3.41), neutropenia (RR 3.57, 95% CI 1.02 to 12.55) and thrombocytopenia (RR 9.74, 95% CI 2.32 to 40.96). Ruxolitinib did not result in differences versus BAT in the risk of anemia (RR 1.35, 95% CI 0.91 to 1.99, low quality evidence) or thrombocytopenia (RR 1.20; 95% CI 0.44 to 3.28, low quality evidence). The risk of non-hematologic grade 3 or 4 adverse events (including fatigue, arthralgia, nausea, diarrhea, extremity pain and pyrexia) was similar when ruxolitinib was compared with placebo or BAT. The rate of neutropenia comparing ruxolitinib with standard medical treatment was not reported by the trial.

Authors' conclusions: Currently, there is insufficient evidence to allow any conclusions regarding the efficacy and safety of ruxolitinib for treating myelofibrosis. The findings of this Cochrane review should be interpreted with caution as they are based on trials sponsored by industry, and include a small number of patients. Unless powered randomized clinical trials provide strong evidence of a treatment effect, and the trade-off between potential benefits and harms is established, clinicians should be cautious when administering ruxolitinib for treating patients with myelofibrosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review
  • Systematic Review

MeSH terms

  • Humans
  • Janus Kinase 1 / antagonists & inhibitors*
  • Janus Kinase 2 / antagonists & inhibitors*
  • Nitriles
  • Primary Myelofibrosis / drug therapy*
  • Primary Myelofibrosis / mortality
  • Protein Kinase Inhibitors / therapeutic use*
  • Pyrazoles / therapeutic use*
  • Pyrimidines
  • Quality of Life
  • Randomized Controlled Trials as Topic

Substances

  • Nitriles
  • Protein Kinase Inhibitors
  • Pyrazoles
  • Pyrimidines
  • ruxolitinib
  • JAK2 protein, human
  • Janus Kinase 1
  • Janus Kinase 2