Estimating Drivers' Stress from GPS Traces

Proc Int Conf Automot User Interfaces Interact Veh Appl (2014). 2014 Sep 17:2014:2667335. doi: 10.1145/2667317.2667335.

Abstract

Driving is known to be a daily stressor. Measurement of driver's stress in real-time can enable better stress management by increasing self-awareness. Recent advances in sensing technology has made it feasible to continuously assess driver's stress in real-time, but it requires equipping the driver with these sensors and/or instrumenting the car. In this paper, we present "GStress", a model to estimate driver's stress using only smartphone GPS traces. The GStress model is developed and evaluated from data collected in a mobile health user study where 10 participants wore physiological sensors for 7 days ( for an average of 10.45 hours/day) in their natural environment. Each participant engaged in 10 or more driving episodes, resulting in a total of 37 hours of driving data. We find that major driving events such as stops, turns, and braking increase stress of the driver. We quantify their impact on stress and thus construct our GStress model by training a Generalized Linear Mixed Model (GLMM) on our data. We evaluate the applicability of GStress in predicting stress from GPS traces, and obtain a correlation of 0.72. By obviating any burden on the driver or the car, we believe, GStress can make driver's stress assessment ubiquitous.

Keywords: Driving; GPS; H.1.2. Models and Principles: User/Machine Systems; Mobile Health; Stress.