Synthesis of novel C5-curcuminoid-fatty acid conjugates and mechanistic investigation of their anticancer activity

Bioorg Med Chem Lett. 2015;25(10):2174-80. doi: 10.1016/j.bmcl.2015.03.065. Epub 2015 Mar 31.

Abstract

The first synthesis of C5-curcumin-fatty acid (C5-Curc-FA) conjugates was successfully performed. Through a two-step synthetic route, 10 analogs were synthesized for a structure-activity relationship (SAR) study. It was found that C5-Curc-FA conjugates containing either decanoic acid or palmitic acid moieties were cytotoxic against colorectal adenocarcinoma cell (CCL-229) at IC50s ranging from 22.5 to 56.1μg/mL, being 5c the most active C5-Curc-FA conjugate. Our results strongly suggests that a decanoic acid moiety at the meta position in C5-Curc-FA conjugates is important for their anticancer activity effect. Possible mechanisms for the anticancer activity of C5-Curc-FA conjugates were also investigated including apoptosis induction, mitochondrial damage and caspases activation. It was shown that 5c inhibited the luminescence activity of NFκB, a key signaling molecule involved in cell apoptosis and cell proliferation, at IC50=18.2μg/mL. In addition, it was demonstrated that 5c displayed significant apoptotic effect at GI50=46.0μg/mL in colorectal adenocarcinoma cell line (ATCC CCL-222), which can be explained by the significant mitochondrial membrane permeabilization and caspases 3 and 7 activation effect of 5c. Finally, it was investigated that C5-Curc-FA conjugates can affect the replication process of cancer cells, since compounds 5c, 5e, and 6c inhibited the relaxing activity of the human DNA topoisomerase I at minimum inhibitory concentrations (MICs) that range from 50 to 250μg/mL. Our results strongly support the hypothesis that the inhibition of both NFκB and DNA topoisomerase I by C5-Curc-FA conjugates is associated with their anticancer activity.

Keywords: Anticancer agents; Apoptosis; C5-curcuminoids synthesis; DNA topoisomerase I; NFκB.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Antineoplastic Agents / chemical synthesis*
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects
  • Cell Line, Tumor
  • Curcumin / chemistry*
  • Fatty Acids / chemistry*
  • Humans

Substances

  • Antineoplastic Agents
  • Fatty Acids
  • Curcumin