The aim of the present review was to illustrate how dysregulation of hormonal signaling regulates expressional changes of spatially associated genes in endometriosis. From a multi‑platform endometriosis dataset, an integrated analysis was performed of epigenomic changes of several biologically relevant genes that have been validated in the literature. Estrogen receptor (ER) may act as a direct epigenetic driver for endometriosis establishment, maintenance and progression. A majority of endometriosis susceptibility genes may be present in functional downstream targets of ER and located near the known imprinting genes. Previous studies have shed light on the overlapping genetic signatures between endometriosis development and the defective decidualization process. The steroid hormone‑mediated decidualization signaling pathway was shown to be frequently dysregulated in endometriosis. DNA methylation is associated with various intragenic or intergenic epigenetic modifications of chromatin. Chromatin architecture may be established in temporal and spatial orchestration of the recruitment of genes specifically downregulated in endometriosis. In conclusion, defective chromatin architecture at the ER target locus may have a key role in endometriosis. Endometriosis represents an interesting model to explore the variation of expression of spatially associated genes.