Cellular senescence and autophagy of myoepithelial cells are involved in the progression of in situ areas of carcinoma ex-pleomorphic adenoma to invasive carcinoma. An in vitro model

J Cell Commun Signal. 2015 Sep;9(3):255-65. doi: 10.1007/s12079-015-0291-9. Epub 2015 Apr 21.

Abstract

During tumor invasion, benign myoepithelial cells of carcinoma ex-pleomorphic adenoma (CXPA) surround malignant epithelial cells and disappear. The mechanisms involved in the death and disappearance of these myoepithelial cells were investigated via analysis of the expression of regulatory proteins for apoptosis, autophagy and cellular senescence in an in situ in vitro model. Protein expression relating to apoptosis (Bax, Bcl-2, Survivin), autophagy (Beclin-1, LC3B) and cellular senescence (p21, p16) was evaluated using indirect immunofluorescence. β-galactosidase expression was assessed via histochemistry. Biopsies of CXPA (ex vivo) allowed immunhistochemical evaluation of p21 and p16, whilst LC3B, p21 and p16 protein expression was analyzed by western blotting. In the in vitro model, the myoepithelial cells were positive for LC3B (cytoplasm) and p21 (nucleus), whilst in vivo positivity for p21 and p16 was observed. In vitro, β-galactosidase activity increased in the myoepithelial cells over time. Western blotting analysis revealed an increased LC3B, p16 and p21 expression in the myoepithelial cells with previous contact with the malignant cells when compared with those without contact. The investigation of behavior of benign myoepithelial cells in ductal areas of CXAP revealed that the myoepithelial cells are involved in the autophagy-senescence phenotype that subsequently leads to their disappearance.

Keywords: Autophagy; Cellular Senescence; Myoepithelial Cells; Tumor Microenvironment.