Melatonin, an antioxidant in both animals and plants, has been reported to have beneficial effects on the aging process. It was also suggested to play a role in extending longevity and enhancing abiotic stress resistance in plant. In this study, we demonstrate that melatonin acts as a potent agent to delay leaf senescence and cell death in rice. Treatments with melatonin significantly reduced chlorophyll degradation, suppressed the transcripts of senescence-associated genes, delayed the leaf senescence, and enhanced salt stress tolerance. Genome-wide expression profiling by RNA sequencing reveals that melatonin is a potent free radical scavenger, and its exogenous application results in enhanced antioxidant protection. Leaf cell death in noe1, a mutant with over-produced H2O2, can be relieved by exogenous application of melatonin. These data demonstrate that melatonin delays the leaf senescence and cell death and also enhances abiotic stress tolerance via directly or indirectly counteracting the cellular accumulation of H2O2.
Keywords: cell death; hydrogen peroxide; leaf senescence; melatonin; rice; transcriptome.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.