Multiple stages of learning in perceptual categorization: evidence and neurocomputational theory

Psychon Bull Rev. 2015 Dec;22(6):1598-613. doi: 10.3758/s13423-015-0827-2.

Abstract

Virtually all current theories of category learning assume that humans learn new categories by gradually forming associations directly between stimuli and responses. In information-integration category-learning tasks, this purported process is thought to depend on procedural learning implemented via dopamine-dependent cortical-striatal synaptic plasticity. This article proposes a new, neurobiologically detailed model of procedural category learning that, unlike previous models, does not assume associations are made directly from stimulus to response. Rather, the traditional stimulus-response (S-R) models are replaced with a two-stage learning process. Multiple streams of evidence (behavioral, as well as anatomical and fMRI) are used as inspiration for the new model, which synthesizes evidence of multiple distinct cortical-striatal loops into a neurocomputational theory. An experiment is reported to test a priori predictions of the new model that: (1) recovery from a full reversal should be easier than learning new categories equated for difficulty, and (2) reversal learning in procedural tasks is mediated within the striatum via dopamine-dependent synaptic plasticity. The results confirm the predictions of the new two-stage model and are incompatible with existing S-R models.

Keywords: Categorization; Procedural learning; Striatum.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Humans
  • Models, Psychological*
  • Neuronal Plasticity
  • Psychological Theory*
  • Reversal Learning*