The yellow octocoral Eunicella cavolini is one of the most common gorgonians thriving in Mediterranean hard-bottom communities. However, information regarding its distribution and ecology in several parts of the Mediterranean is lacking, while population trends and conservation status remain largely unknown. We investigated 19 populations of E. cavolini over three representative geographic regions: the NW Mediterranean, CE Adriatic, and N Aegean. Focusing on the upper bathymetric range of the species (<40 m), data were collected on the populations' upper depth limit, density, colony height, and extent of injury. A three-level hierarchical sampling design was applied to assess the existence of spatial patterns, using: a) regions (located thousands of km apart), b) localities within regions (tens to hundreds of km apart), and c) sites within localities (hundreds of m to a few km apart). In the NW Mediterranean and CE Adriatic, the upper distribution limit was at depths ≤15 m, whereas in the N Aegean most populations were found deeper than 30 m. Population density ranged between 4.46-62 colonies per m2, while mean colony height was 15.6±8.9 SD cm with a maximum of 62 cm. The NW Mediterranean sites were characterized by dense populations dominated by small colonies (<20 cm), periodic recruitment, and low proportion of large gorgonians (>30 cm). The CE Adriatic displayed intermediate densities, with well-structured populations, and continuous recruitment. In the N Aegean, most populations presented low densities, high proportion of large colonies, but low number of small colonies, signifying limited recruitment. Disturbance levels, as a function of extent and type of injury, are discussed in relation to past or present human-induced threats. This work represents geographically the most wide ranging demographic study of a Mediterranean octocoral to date. The quantitative information obtained provides a basis for future monitoring at a Mediterranean scale.