Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster

PLoS One. 2015 May 18;10(5):e0126986. doi: 10.1371/journal.pone.0126986. eCollection 2015.

Abstract

Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly's body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Avoidance Learning*
  • DNA Transposable Elements
  • Drosophila melanogaster / physiology*
  • Electroshock*
  • Gene Deletion
  • Gene Expression Profiling
  • Gene Regulatory Networks
  • Genetic Association Studies*
  • Genome-Wide Association Study*
  • Locomotion
  • Mutagenesis, Insertional
  • Reproducibility of Results

Substances

  • DNA Transposable Elements

Grants and funding

This study was funded by a research grant from the Deutche Forschungsgemeinschaft to AY (YA272/2-1) (http://www.dfg.de/) and institutional support from the Max Planck Institute for Neurobiology (http://www.neuro.mpg.de/) and the Leibniz Institute for Neurobiology (http://www.lin-magdeburg.de/index.jsp). MA received a PhD stipend from Studienstiftung des deutschen Volkes (http://www.studienstiftung.de/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.