Characterization of the adenosine A2 receptor has been limited due to the lack of available ligands which have high affinity and selectivity for this adenosine receptor subtype. In the present study, the binding of a highly A2-selective agonist radioligand, [3H]CGS 21680 (2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamido adenosine) is described. [3H]CGS 21680 specific binding to rat striatal membranes was saturable, reversible and dependent upon protein concentration. Saturation studies revealed that [3H]CGS 21680 bound with high affinity (Kd = 15.5 nM) and limited capacity (apparent Bmax = 375 fmol/mg of protein) to a single class of recognition sites. Estimates of ligand affinity (16 nM) determined from association and dissociation kinetic experiments were in close agreement with the results from the saturation studies. [3H]CGS 21680 binding was greatest in striatal membranes with negligible specific binding obtained in rat cortical membranes. Adenosine agonists ligands competed for the binding of 5 nM [3H]CGS 21680 to striatal membranes with the following order of activity; CGS 21680 = 5'-N-ethylcarboxamidoadenosine greater than 2-phenylaminoadenosine (CV-1808) = 5'-N-methylcarboxamidoadenosine = 2-chloroadenosine greater than R-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6cyclopentyltheophylline greater than S-phenylisopropyladenosine. The nonxanthine adenosine antagonist, CGS 15943A, was the most active compound in inhibiting the binding of [3H]CGS 21680. Other adenosine antagonists inhibited binding in the following order; xanthine amine congener = (1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 1,3-dipropyl-8-cyclopentylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than 8-phenyltheophylline greater than 8-cyclopentyltheophylline = xanthine carboxylic acid congener greater than 8-parasulfophenyltheophylline greater than theophylline greater than caffeine. The pharmacological profile of both adenosine agonist and antagonist compounds to compete for the binding of [3H]CGS 21680 was consistent with a selective interaction at the high affinity adenosine A2 receptor. A high positive correlation (r = 0.98, P less than .01) was observed between the pharmacological profile of adenosine ligands to inhibit the binding of [3H]CGS 21680 and the selective binding of [3H]NECA (+50 nM CPA) to high affinity A2 receptors. However, some differences between these assays were found for compounds which have moderate affinity and nonselective actions at both the A1 and A2 adenosine receptor subtypes. Unlike data obtained with nonselective adenosine ligands, the present results indicate that [3H]CGS 21680 directly labels the high affinity A2 receptor in rat brain without the need to block binding activity at the A1 receptor.(ABSTRACT TRUNCATED AT 400 WORDS)