Laser-stimulated fluorescence in paleontology

PLoS One. 2015 May 27;10(5):e0125923. doi: 10.1371/journal.pone.0125923. eCollection 2015.

Abstract

Fluorescence using ultraviolet (UV) light has seen increased use as a tool in paleontology over the last decade. Laser-stimulated fluorescence (LSF) is a next generation technique that is emerging as a way to fluoresce paleontological specimens that remain dark under typical UV. A laser's ability to concentrate very high flux rates both at the macroscopic and microscopic levels results in specimens fluorescing in ways a standard UV bulb cannot induce. Presented here are five paleontological case histories that illustrate the technique across a broad range of specimens and scales. Novel uses such as back-lighting opaque specimens to reveal detail and detection of specimens completely obscured by matrix are highlighted in these examples. The recent cost reductions in medium-power short wavelength lasers and use of standard photographic filters has now made this technique widely accessible to researchers. This technology has the potential to automate multiple aspects of paleontology, including preparation and sorting of microfossils. This represents a highly cost-effective way to address paleontology's preparatory bottleneck.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fluorescence*
  • Lasers*
  • Paleontology / methods*

Grants and funding

This work was supported by the Dr. Stephen S. F. Hui Trust Fund (201403173007), Faculty of Science and Department of Earth Sciences of the University of Hong Kong, the National Natural Science Foundation of China (41120124002), the 973 (National Basic Research) program (2012CB821900) and a Panorama grant supplied by the University of Kansas Natural History Museum and Biodiversity Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.