Evidence for abnormal brain function as measured with diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) and cognitive dysfunction have been observed in inter-episode bipolar disorder (BD) patients. We aimed to create a joint statistical model of white matter integrity and functional response measures in explaining differences in working memory and processing speed among BD patients. Medicated inter-episode BD (n=26; age=45.2±10.1 years) and healthy comparison (HC; n=36; age=46.3±11.5 years) participants completed 51-direction DTI and fMRI while performing a working memory task. Participants also completed a processing speed test. Tract-based spatial statistics identified common white matter tracts where fractional anisotropy was calculated from atlas-defined regions of interest. Brain responses within regions of interest activation clusters were also calculated. Least angle regression was used to fuse fMRI and DTI data to select the best joint neuroimaging predictors of cognitive performance for each group. While there was overlap between groups in which regions were most related to cognitive performance, some relationships differed between groups. For working memory accuracy, BD-specific predictors included bilateral dorsolateral prefrontal cortex from fMRI, splenium of the corpus callosum, left uncinate fasciculus, and bilateral superior longitudinal fasciculi from DTI. For processing speed, the genu and splenium of the corpus callosum and right superior longitudinal fasciculus from DTI were significant predictors of cognitive performance selectively for BD patients. BD patients demonstrated unique brain-cognition relationships compared to HC. These findings are a first step in discovering how interactions of structural and functional brain abnormalities contribute to cognitive impairments in BD.
Keywords: Bipolar disorder; Diffusion tensor imaging; Functional magnetic resonance imaging; Neuropsychology; Processing speed; Working memory.