Early Exposure to General Anesthesia Disrupts Spatial Organization of Presynaptic Vesicles in Nerve Terminals of the Developing Rat Subiculum

Mol Neurobiol. 2015 Oct;52(2):942-51. doi: 10.1007/s12035-015-9246-7. Epub 2015 Jun 6.

Abstract

Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adjuvants, Anesthesia / toxicity
  • Anesthesia, Inhalation / adverse effects*
  • Anesthetics, Inhalation / administration & dosage
  • Anesthetics, Inhalation / toxicity*
  • Animals
  • Biological Transport / drug effects
  • Cell Membrane / drug effects
  • Cell Membrane / ultrastructure
  • Drug Synergism
  • Hippocampus / drug effects*
  • Hippocampus / growth & development
  • Hippocampus / ultrastructure
  • Isoflurane / administration & dosage
  • Isoflurane / toxicity*
  • Microscopy, Electron
  • Midazolam / administration & dosage
  • Midazolam / toxicity
  • Nitrous Oxide / administration & dosage
  • Nitrous Oxide / toxicity*
  • Presynaptic Terminals / drug effects*
  • Presynaptic Terminals / ultrastructure
  • Rats
  • Rats, Sprague-Dawley
  • Synaptic Vesicles / drug effects*
  • Synaptic Vesicles / ultrastructure

Substances

  • Adjuvants, Anesthesia
  • Anesthetics, Inhalation
  • Isoflurane
  • Nitrous Oxide
  • Midazolam