Background aims: Human cytomegalovirus (CMV) infection and reactivation is a leading complication of allogeneic hematopoietic stem cell transplantation (HSCT). In addition to drug treatment, the adoptive transfer of virus-specific T cells to restore cellular immunity has become a standard therapy after allogeneic HSCT. We recently demonstrated potent anti-leukemic activity of interleukin (IL)-15-activated cytokine-induced killer (CIK) cells. With the use of the same expansion protocol, we asked whether concurrent CMV antigen-pulsing might generate CIK cells with anti-leukemic and anti-CMV activity.
Methods: CIK cells expanded in the presence of interferon-γ, IL-2, IL-15 and anti-CD3 antibody were pulsed once with CMV(pp65) peptide pool. CMV-specific CIK (CIK(pp65)) and conventional CIK cells were phenotypically and functionally characterized according to their cytokine secretion pattern, degranulation capacity and T-cell receptor (TCR)-mediated and NKG2D-mediated cytotoxicity.
Results: We demonstrated that among CIK cells generated from CMV-seropositive donors, a single stimulation with CMV(pp65) protein co-expanded cytotoxic CMV-specific cells without sacrificing anti-tumor reactivity. Cells generated in this fashion lysed CMV(pp65)-loaded target cells and CMV-infected fibroblasts but also leukemic cells. Meanwhile, the alloreactive potential of CIK(pp65) cells remained low. Interestingly, CMV reactivity was TCR-mediated and CMV-specific cells could be found in CD3(+)CD8(+)CD56(+/-) cytotoxic T-cell subpopulations.
Conclusions: We provide an efficient method to generate CIK(pp65) cells that may represent a useful cell therapy approach for preemptive immunotherapy in patients who have both an apparent risk of CMV and impending leukemic relapse after allogeneic stem cell transplantation.
Keywords: CIK cells; CMV; cytotoxicity; immunotherapy; leukemia.
Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.