Chloride is an Agonist of Group II and III Metabotropic Glutamate Receptors

Mol Pharmacol. 2015 Sep;88(3):450-9. doi: 10.1124/mol.114.096420. Epub 2015 Jun 18.

Abstract

The elemental anion chloride is generally considered a passive participant in neuronal excitability, and has never been shown to function as an agonist in its own right. We show that the antagonist-mediated, glutamate-independent inverse agonism of group II and III metabotropic glutamate (mGlu) receptors results from inhibition of chloride-mediated activation. In silico molecular modeling, site-directed mutagenesis, and functional assays demonstrate (1) that chloride is an agonist of mGlu3, mGlu4, mGlu6, and mGlu8 receptors with its own orthosteric site, and (2) that chloride is not an agonist of mGlu2 receptors. Molecular modeling-predicted and site-directed mutagenesis supported that this unique property of mGlu2 receptors results from a single divergent amino acid, highlighting a molecular switch for chloride insensitivity that is transduced through an arginine flip. Ultimately, these results suggest that activation of group II and III mGlu receptors is mediated not only by glutamate, but also by physiologically relevant concentrations of chloride.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • CHO Cells
  • Cells, Cultured
  • Chlorides / pharmacology*
  • Cricetinae
  • Cricetulus
  • Glutamic Acid / pharmacology
  • Molecular Docking Simulation
  • Molecular Sequence Data
  • Mutation, Missense
  • Protein Binding
  • Rats
  • Receptors, Metabotropic Glutamate / agonists*
  • Receptors, Metabotropic Glutamate / chemistry
  • Receptors, Metabotropic Glutamate / genetics
  • Receptors, Metabotropic Glutamate / metabolism

Substances

  • Chlorides
  • Receptors, Metabotropic Glutamate
  • Glutamic Acid