During the past few decades, monoclonal antibodies (MAbs) have become an increasingly used tool in diagnostics, therapeutics, and biomedical research. Several methods have been employed to produce MAbs, one of which is the immortalization of B cells by Epstein-Barr virus (EBV). Despite its simplicity, this procedure was never routinely adopted due to its poor efficiency and short-lived antibody (Ab) production. Various adjustments to the basic procedure were introduced, including the addition of certain cytokines and CpG oligodeoxynucleotides, which were shown to improve EBV infectivity and cloning efficiency. The objective of this study was to manipulate culture conditions of the EBV-transformed human lymphocytes, lymphoblastoid cell lines (LCLs), by the timely addition of stimuli including CpG and various interleukins. Such manipulations are aimed at improving LCL proliferative activity and enhancing the cell lines' immortalization potential as well as their Ab production. To accomplish this, IgG(+) B cells were isolated from peripheral blood of a hepatitis B vaccinated, anti-HB Ab-positive volunteer. These cells were infected with EBV and incubated in the presence of CpG DNA 2006 motifs, recombinant human interleukin-2 (rhIL-2), rhIL-4, rhIL-6, and rhIL-21, individually and in combinations. Cells were then restimulated for 2 weeks with the same ILs. The effect of these ILs on anti-HB Ab production and the proliferation of the EBV-transformed lymphocytes were investigated. The current study demonstrates that treatment of LCL cultures with rhIL-2, rh-IL4, rhIL-6, and rhIL-21, individually and in combination, increased to varying degrees the proliferative activity and Ab production of these cells. The addition of IL-4 alone was able to sustain increase in anti-HB Ab despite IL-4 withdrawal. This study suggests that with further optimization ILs can have an enhancing effect on LCL immortalization potential and Ab production capacity.