Repeated and dramatic pregnancy-induced uterine enlargement and remodeling throughout reproductive life suggests the existence of uterine smooth muscle stem/progenitor cells. The aim of this study was to isolate and characterize stem/progenitor-like cells from human myometrium through identification of specific surface markers. We here identify CD49f and CD34 as markers to permit selection of the stem/progenitor cell-like population from human myometrium and show that human CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells exhibit stem cell-like properties. These include side population phenotypes, an undifferentiated status, high colony-forming ability, multilineage differentiation into smooth muscle cells, osteoblasts, adipocytes, and chondrocytes, and in vivo myometrial tissue reconstitution following xenotransplantation. Furthermore, CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells proliferate under hypoxic conditions in vitro and, compared with the untreated nonpregnant myometrium, show greater expansion in the estrogen-treated nonpregnant myometrium and further in the pregnant myometrium in mice upon xenotransplantation. These results suggest that the newly identified myometrial stem/progenitor-like cells influenced by hypoxia and sex steroids may participate in pregnancy-induced uterine enlargement and remodeling, providing novel insights into human myometrial physiology.
Keywords: CD34; CD49f; myometrium; pregnancy; stem cells; uterus.
© 2015 by the Society for the Study of Reproduction, Inc.