Background: Conventional nutritional supplements are not or only partly successful in inducing protein accretion in advanced cancer, suggesting an attenuated anabolic response. To prevent muscle wasting and its deleterious consequences, generating an anabolic response is crucial. Dietary essential amino acids (EAA) have anabolic properties in other wasting diseases; however, data in advanced cancer are lacking.
Patients and methods: In 13 patients with advanced nonsmall-cell lung cancer (NSCLC) (stage III and IV) and 11 healthy age-matched subjects, we measured protein synthesis and breakdown of the whole body, and net protein anabolism (difference between protein synthesis and breakdown) after intake of 14 g of free EAA with high leucine levels (EAA/leucine) versus a balanced amino acid mixture containing both EAA and non-EAA as present in whey protein, according to a randomized, double-blind, crossover design.
Results: Protein synthesis and net protein anabolism were higher after intake of the EAA/leucine than the balanced amino acid mixture (P < 0.001), independent of presence of cancer. A highly significant linear relationship between net protein anabolism and the amount of EAA available in the systemic circulation (R(2): 0.85, P < 0.001) was found in both groups. The presence of muscle or recent weight loss, systemic inflammatory response, or length of survival did not influence this relationship. High leucine levels in the EAA/leucine mixture was of no anabolic benefit.
Conclusions: There is no anabolic resistance or attenuated anabolic potential to intake of 14 g of EAA/leucine or balanced amino acid mixture in advanced (mainly stage III) NSCLC. The high anabolic potential of dietary EAA in cancer patients is independent of their nutritional status, systemic inflammatory response or disease trajectory, suggesting a key role of EAA in new nutritional approaches to prevent muscle loss, thereby improving outcome of patients with advanced cancer.
Clinicaltrailsgov: NCT01172314.
Keywords: cachexia; dietary essential amino acids; nonsmall-cell lung cancer; protein anabolism; stable isotopes; translational research.
© The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.