Reliable, noninvasive methods for diagnosing and prognosing sinusoidal obstruction syndrome (SOS) early after hematopoietic cell transplantation (HCT) are needed. We used a quantitative mass spectrometry-based proteomics approach to identify candidate biomarkers of SOS by comparing plasma pooled from 20 patients with and 20 patients without SOS. Of 494 proteins quantified, we selected 6 proteins (L-Ficolin, vascular cell adhesion molecule-1 [VCAM1], tissue inhibitor of metalloproteinase-1, von Willebrand factor, intercellular adhesion molecule-1, and CD97) based on a differential heavy/light isotope ratio of at least 2 fold, information from the literature, and immunoassay availability. Next, we evaluated the diagnostic potential of these 6 proteins and 5 selected from the literature (suppression of tumorigenicity-2 [ST2], angiopoietin-2 (ANG2), hyaluronic acid [HA], thrombomodulin, and plasminogen activator inhibitor-1) in samples from 80 patients. The results demonstrate that together ST2, ANG2, L-Ficolin, HA, and VCAM1 compose a biomarker panel for diagnosis of SOS. L-Ficolin, HA, and VCAM1 also stratified patients at risk for SOS as early as the day of HCT. Prognostic Bayesian modeling for SOS onset based on L-Ficolin, HA, and VCAM1 levels on the day of HCT and clinical characteristics showed >80% correct prognosis of SOS onset. These biomarkers may provide opportunities for preemptive intervention to minimize SOS incidence and/or severity.
Keywords: Biomarkers; Proteomics; SOS; Sinusoidal obstruction syndrome; VOD; Veno-occlusive disease.
Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.