Blood samples have traditionally been used as the main source of DNA for genetic analysis. However, this source can be difficult in terms of collection, transportation, and long-term storage. In this study, we investigated whether human nail clippings could be used as a source of DNA for SNP genotyping, null-allele detection, and whole-genome amplification. From extracted nail DNA, we achieved amplicons up to a length of ~400 bp and >96% concordance for SNP genotyping and 100% concordance for null-allele detection compared to DNA derived from matched blood samples. For whole-genome amplification, OmniPlex performed better than Multiple Displacement Amplification with a success rate of 89.3% and 76.8% for SNP genotyping and null-allele detection, respectively. Concordance was ~98% for both methods. When combined with OmniPlex whole-genome amplification, human nail clippings could potentially be used as an alternative to whole blood as a less invasive and more convenient source of DNA for genotyping studies.
Keywords: Genotyping; Nail Clippings; Single Nucleotide Polymorphism (SNP); Whole Genome Amplification (WGA).