We present an experimental demonstration of nanoscale gap plasmon resonators that consist of an individual suspended plasmonic nanowire (NW) over a metallic substrate. Our study demonstrates that the NW supports strong gap plasmon resonances of various gap sizes including single-nanometer-scale gaps. The obtained resonance features agree well with intuitive resonance models for near- and far-field regimes. We also illustrate that our suspended NW geometry is capable of constructing plasmonic coupled systems dominated by quasi-electrostatics.
Keywords: Fabry−Perot resonance; Fano resonance; gap plasmon; nanowire; optical antenna; pick-and-place method.