Antigen presenting cells (APCs) such as macrophages and dendritic cells (DCs) play a crucial role in orchestrating immune responses against foreign materials. The activation status of APCs can determine the outcome of an immune response following implantation of synthetic materials, towards either healing or inflammation. A large range of biomaterials are used in the fabrication of implantable devices and drug delivery systems. These materials will be in close contact with APCs and characteristics such as surface chemistry and topography may have a critical role in initiating pro- or anti-inflammatory immune responses. Controlling biomaterial surface attributes provides a powerful tool for modulating the phenotype and function of immune cells with the aim of reducing detrimental pro-inflammatory responses and promoting beneficial healing responses. In this article, we review recent literature on how biomaterial surface topography and chemistry can modulate APC populations towards distinct pro- or anti-inflammatory phenotypes with specific examples of how these properties can be used to control host response in vivo. Topographical and/or chemical design of biomaterial surfaces with respect to the APC responses can pave the way for a new generation of 'cell instructive' materials with immunomodulatory properties with a wide range of clinical applications.