Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis.
Keywords: Afferent; Facet joint; NGF; Neuronal hyperexcitability; Pain; Trauma.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.