It has been reported that glycosylation can influence the proteolytic cleavage of proteins. A thorough investigation of this phenomenon was conducted for the serine protease trypsin, which is essential in many proteomics workflows. Monoclonal and polyclonal immunoglobulin G biopharmaceuticals were employed as model substances, which are highly relevant for the bioanalytical applications. Relative quantitation of glycopeptides derived from the conserved Fc-glycosylation site allowed resolution of biases on the level of individual glycan compositions. As a result, a strong preferential digestion of high mannose, hybrid, alpha2-3-sialylated and bisected glycoforms was observed over the most abundant neutral, fucosylated glycoforms. Interestingly, this bias was, to a large extent, dependent on the intact higher order structure of the antibodies and, consequently, was drastically reduced in denatured versus intact antibodies. In addition, a cleavage protocol with acidic denaturation was tested, which featured reduced hands-on time and toxicity while showing highly comparable results to a published denaturation, reduction, and alkylation based protocol.
Keywords: biopharmaceuticals; glycoproteomics; glycosylation; higher-order structure; immunoglobulin G; method development; monoclonal antibodies; proteolytic biases; trypsin substrate specificity; tryptic cleavage.