The phosphatidylinositol 3-kinase (PI3K) pathway is commonly deregulated in cancer and, thus, PI3K has been recognized as an attractive molecular target for novel anti-cancer therapies. However, the effect of PI3K inhibitors on T-cell function, a key component of antitumor immunity, has been scantly explored. The objective of this study was to investigate the effect on human T-cell activation of two PI3K inhibitors currently being tested in clinical trials: PX-866 and BKM120. Their activity against a leukemic T cell line was also assessed. For that purpose, Jurkat cells or anti-CD3/anti-CD28 stimulated human peripheral blood mononuclear cells were cultured in the presence of different concentrations of PX-866 or BKM120 and their effect on T-cell proliferation, apoptosis, expression of activation markers and cytokine secretion was analyzed by flow cytometry. In addition, Akt and Erk phosphorylation was analyzed by Western blotting. Both PX-866 and BKM120 decreased viability of Jurkat cells and blocked cell cycle progression. Regarding primary T cells, both compounds similarly inhibited expression of activation markers and cytokine secretion, although they did not induce apoptosis of stimulated T cells. Interestingly, we found differences in their ability to block T-cell proliferation and IL-2 secretion, exerting BKM120 a more potent inhibition. These disparate effects could be related to differences observed in PI3K/Akt and RAS/MEK/ERK signaling between PX-866 and BKM120 treated cells. Our results suggest that, when selecting a PI3K inhibitor for cancer therapy, immunosuppressive characteristics should be taken into account in order to minimize detrimental effects on immune function.
Keywords: Anti-tumor immunity; Cancer therapy; PI3K inhibitor; T cell.
Copyright © 2015 Elsevier B.V. All rights reserved.