Many patients do not receive care consistent with best practice. Health informatics interventions often attempt to address this problem by comparing care provided to patients (e.g., from electronic health record data) to quality standards (e.g., described in clinical guidelines) and feeding this information back to clinicians. Traditionally these interventions are delivered at the patient-level as computerized clinical decision support (CDS) or at the population level as audit and feedback (A&F). Both CDS and A&F can improve care for patients but are variably effective; the challenge is to understand how the efficacy can be maximized. Although CDS and A&F are traditionally considered separate approaches, we argue that the systems share common mechanisms, and efficacy may be improved by cross-fertilizing relevant features and concepts. We draw on the Health Informatics and Implementation Science literature to argue that common mechanisms include functions typically associated with the other system, in addition to other features that may prove fruitful for further research.