Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

J Virol. 2015 Nov;89(21):10774-85. doi: 10.1128/JVI.01463-15. Epub 2015 Aug 12.

Abstract

The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate constitutive Myc protein expression. We additionally demonstrated that EGFR contributes to constitutive Myc expression through the capacity of E4-ORF1 to induce ligand-independent EGFR activation and stimulation of the Ras/Mek/Erk pathway, the latter activity of which was conserved by human adenoviruses. Results further suggested that EGFR normally forms a complex with the cellular PDZ protein Discs Large 1 (Dlg1), a component of the Dlg1:E4-ORF1:PI3K ternary complex that mediates E4-ORF1-induced PI3K activation, and that E4-ORF1 binds the Dlg1:EGFR complex and promotes the association of EGFR with InsR and IGF1R. In addition to its role in constitutive Myc expression, InsR/IGF1R also negatively regulates EGFR autophosphorylation and EGFR-mediated Ras/Mek/Erk signaling, and data suggested that E4-ORF1 binding to Dlg1 antagonizes these activities. Collectively, our findings suggest that in human epithelial cells, E4-ORF1 targets EGFR, InsR/IGF1R, and PI3K at the plasma membrane to activate cytosolic signaling pathways that sustain Myc protein levels in the nucleus. We postulate that E4-ORF1-induced constitutive Myc expression functions to ensure the formation of nuclear E4-ORF1:Myc complexes, which have been shown to activate Myc and to enhance adenovirus replication.

Importance: While human adenoviruses primarily produce self-limited acute infections in humans, these agents are associated with life-threatening diseases in immunocompromised patients and in otherwise healthy individuals infected with certain virulent serotypes. The adenovirus E4-ORF1 protein enhances viral replication by activating the cellular lipid kinase PI3K and the cellular transcription factor Myc. Here we report that E4-ORF1 usurps the functions of the cellular tyrosine kinase receptors EGFR and InsR /: IGF1R, as well as PI3K, to sustain Myc protein expression in cells. Furthermore, sustained Myc expression depended on E4-ORF1-induced ligand-independent EGFR activation that stimulated Ras/Mek/Erk signaling, a function found to be conserved by human adenoviruses. Given the established roles of PI3K, the Ras/Mek/Erk pathway, and Myc in the adenovirus life cycle, our findings may aid in the development of safer, more effective therapeutic strategies to treat severe adenovirus infections as well as improved adenovirus vectors for use in vaccination and gene and cancer therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenoviridae / genetics
  • Adenoviridae / metabolism*
  • Adenovirus E4 Proteins / metabolism*
  • Analysis of Variance
  • Epidermal Growth Factor / metabolism*
  • Gene Expression Regulation, Viral / physiology*
  • Humans
  • Immunoblotting
  • Immunoprecipitation
  • Open Reading Frames / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • Receptors, Somatomedin / metabolism*

Substances

  • Adenovirus E4 Proteins
  • MYC protein, human
  • Proto-Oncogene Proteins c-myc
  • Receptors, Somatomedin
  • Epidermal Growth Factor