Recent technological advances in sequencing have flooded the field of cancer research with knowledge about somatic mutations for many different cancer types. Most cancer genomics studies focus on mutations that alter the amino acid sequence, ignoring the potential impact of synonymous mutations. However, accumulating experimental evidence has demonstrated clear consequences for gene function, leading to a widespread recognition of the functional role of synonymous mutations and their causal connection to various diseases. Here, we review the evidence supporting the direct impact of synonymous mutations on gene function via gene splicing; mRNA stability, folding, and translation; protein folding; and miRNA-based regulation of expression. These results highlight the functional contribution of synonymous mutations to oncogenesis and the need to further investigate their detection and prioritization for experimental assessment.
Keywords: cancer; gene splicing; melanoma; miRNA regulation; protein folding; protein translation; secondary structure; synonymous mutations.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.