A method for achieving good position resolution of low-intensity electron signals using a microchannel plate resistive anode detector is demonstrated. Electron events at a rate of 7 counts s(-1) are detected using a Z-stack microchannel plate. The dependence of position resolution on both the distance and the potential difference between the microchannel plate and resistive anode is investigated. Using standard commercial electronics, a measured position resolution of 170 μm (FWHM) is obtained, which corresponds to an intrinsic resolution of 157 μm (FWHM).