There was evidence that RNAs are a functionally rich class of molecules not only since the arrival of the next-generation sequencing technology. Non-coding RNAs (ncRNA) could be the key to accelerated diagnosis and enhanced prediction of disease and therapy outcomes as well as the design of advanced therapeutic strategies to overcome yet unsatisfactory approaches.In this review, we discuss the state of the art in RNA systems biology with focus on the application in the systems biomedicine field. We propose guidelines for analysing the role of microRNAs and long non-coding RNAs in human pathologies. We introduce RNA expression profiling and network approaches for the identification of stable and effective RNomics-based biomarkers, providing insights into the role of ncRNAs in disease regulation. Towards this, we discuss ways to model the dynamics of gene regulatory networks and signalling pathways that involve ncRNAs. We also describe data resources and computational methods for finding putative mechanisms of action of ncRNAs. Finally, we discuss avenues for the computer-aided design of novel RNA-based therapeutics.
Keywords: RNA function prediction; RNA systems medicine; lncRNA; miRNA; ncRNA network modeling; target prediction.
© The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.