Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.
© 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.