Cadmium (Cd) is a heavy metal and environmental toxin. Exposure to Cd has been associated with a variety of human cancers. In this study, we performed in vitro assays to examine the effects of cadmium chloride (CdCl₂) on A549 cells, a human lung adenocarcinoma cell line. Cd does not affect proliferation, migration, or apoptosis of A549 cells at concentrations of 0.1-10 μM. At 0.5 and 1 μM, Cd increases the expression of vascular endothelial growth factor (VEGF) (p < 0.05, p < 0.01, respectively), but not basic fibroblast growth factor (b-FGF) in A549 cells. The conditioned media were collected from the A549 cells treated with 1 μM Cd and were co-cultured with human umbilical vein endothelial cells (HUVECs). Upon treatment with the conditioned media, the proliferation and migration of HUVECs significantly increased (p < 0.01, p < 0.05, respectively), while apoptosis remained unchanged. In addition, 1 μM Cd increases the level of hypoxia inducible factor 1-α (HIF1-α), which is a positive regulator of VEGF expression. Although low-dose Cd does not directly affect the growth of lung adenocarcinoma cells, it might facilitate the development of tumors through its pro-angiogenic effects.
Keywords: VEGF; angiogenesis; cadmium; endothelial cell; lung adenocarcinoma.