Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared to the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplemental materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.
Keywords: Discriminant analysis; Sparse discriminant analysis; Sparse regression by projection; Zero within-class and between-class correlations.