Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Keywords: cis-regulatory elements; coexpression modules; comparative expression; comparative functional genomics; comparative sequencing; evolution; gene regulatory networks; network analysis.