miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3

Biochem Biophys Res Commun. 2015 Nov 20;467(3):595-601. doi: 10.1016/j.bbrc.2015.09.058. Epub 2015 Sep 12.

Abstract

Endothelial dysfunction is one of the main pathophysiological processes involved in renal ischemia reperfusion injury. Our previous microarray study demonstrated that miR-98 was upregulated in the kidney with ischemia reperfusion injury (IRI). The present study was performed to investigate whether miR-98 was involved in the regulation of endothelial apoptosis under hypoxia and re-oxygenation (H/R) conditions. The dynamic changes of miR-98 in mouse IRI kidney and H/R HUVECs was measured. HUVECs were treated with HIF-1α siRNA to investigate the role of HIF-1α on miR-98 expression. The potential target genes of miR-98 were predicted by bioinformatics analyses. HUVECs were transfected with miR-98 mimics or inhibitor to confirm the role of miR-98 on the expression of target genes and hypoxia-induced apoptosis. The target gene was finally confirmed by dual-luciferase reporter assay. Both of IRI and H/R induced significantly up-regulation of miR-98 in the ischemic kidney and hypoxic HUVECs. HIF-1α siRNA remarkably down-regulated the expression of miR-98 in both normal and hypoxic HUVECs. The putative target genes of miR-98 included IL-6, IL-10 and caspase-3. MiR-98 mimics significantly inhibit caspase-3 expression in HUVECs, while anti-miR-98 significantly up-regulated it. But no change of IL-6 and IL-10 levels was observed after miRNA transfection. miR-98 protected HUVECs against apoptosis induced by hypoxia, while anti-miR-98 had the reverse effect. Furthermore, the dual-luciferase reporter assay confirmed that miR-98 decreased the luciferase activity by targeting the 3' untranslated region of caspase-3. In conclusion, Renal IRI induces up-regulation of miR-98 dependent on HIF-1α, which protects endothelial cells against apoptosis by targeting caspase-3.

Keywords: Apoptosis; Caspase-3; Ischemia reperfusion injury; miR-98.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3' Untranslated Regions
  • Animals
  • Apoptosis*
  • Caspase 3 / genetics
  • Caspase 3 / metabolism
  • Cell Hypoxia*
  • Endothelium, Vascular / enzymology
  • Endothelium, Vascular / metabolism
  • Endothelium, Vascular / pathology*
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / physiology*
  • Oxygen / administration & dosage*

Substances

  • 3' Untranslated Regions
  • MIRN98 microRNA, human
  • MicroRNAs
  • Caspase 3
  • Oxygen