Rad53-Mediated Regulation of Rrm3 and Pif1 DNA Helicases Contributes to Prevention of Aberrant Fork Transitions under Replication Stress

Cell Rep. 2015 Oct 6;13(1):80-92. doi: 10.1016/j.celrep.2015.08.073. Epub 2015 Sep 24.

Abstract

Replication stress activates the Mec1(ATR) and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress. Rrm3 and Pif1 ablations rescue cell lethality, chromosome fragmentation, replisome-fork dissociation, fork reversal, and processing in rad53 cells. Through phosphorylation, Rad53 regulates Rrm3 and Pif1; phospho-mimicking rrm3 mutants ameliorate rad53 phenotypes following replication stress without affecting replication across pausing elements under normal conditions. Hence, the Mec1-Rad53 axis protects fork stability by regulating nuclear pores and DNA helicases. We propose that following replication stress, forks stall in an asymmetric conformation by inhibiting Rrm3 and Pif1, thus impeding lagging strand extension and preventing fork reversal; conversely, under unperturbed conditions, the peculiar conformation of forks encountering pausing sites would depend on active Rrm3 and Pif1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Binding Sites
  • Cell Cycle Proteins / genetics*
  • Cell Cycle Proteins / metabolism
  • Checkpoint Kinase 2 / genetics*
  • Checkpoint Kinase 2 / metabolism
  • DNA Helicases / genetics*
  • DNA Helicases / metabolism
  • DNA Replication
  • DNA, Fungal / genetics*
  • DNA, Fungal / metabolism
  • Gene Expression Regulation, Fungal*
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Molecular Sequence Data
  • Nuclear Pore / metabolism
  • Phosphorylation
  • Protein Binding
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics*
  • Saccharomyces cerevisiae Proteins / metabolism
  • Signal Transduction

Substances

  • Cell Cycle Proteins
  • DNA, Fungal
  • Intracellular Signaling Peptides and Proteins
  • Saccharomyces cerevisiae Proteins
  • Checkpoint Kinase 2
  • MEC1 protein, S cerevisiae
  • Protein Serine-Threonine Kinases
  • RAD53 protein, S cerevisiae
  • PIF1 protein, S cerevisiae
  • Rrm3 protein, S cerevisiae
  • DNA Helicases

Associated data

  • GEO/GSE68214