A resilient formin-derived cortical actin meshwork in the rear drives actomyosin-based motility in 2D confinement

Nat Commun. 2015 Sep 29:6:8496. doi: 10.1038/ncomms9496.

Abstract

Cell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear. Mechanical resistance of this actin compartment is accomplished by actin crosslinkers and IQGAP-related proteins, and is mandatory to withstand the increased contractile forces in response to mechanical stress by impeding unproductive blebbing in the rear, allowing efficient cell migration in two-dimensional-confined environments. Consistently, ForA supresses the formation of lateral protrusions, rapidly relocalizes to new prospective ends in repolarizing cells and is required for cortical integrity. Finally, we show that ForA utilizes the phosphoinositide gradients in polarized cells for subcellular targeting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism*
  • Actins / metabolism
  • Actomyosin / metabolism
  • Animals
  • Dictyostelium / physiology*
  • Female
  • Locomotion*
  • Microfilament Proteins / metabolism
  • Myosin Type II / metabolism
  • Phosphatidylinositols / metabolism
  • Protozoan Proteins / metabolism
  • Rabbits
  • ras GTPase-Activating Proteins / metabolism

Substances

  • Actins
  • IQ motif containing GTPase activating protein 1
  • Microfilament Proteins
  • Phosphatidylinositols
  • Protozoan Proteins
  • ctxA protein, Dictyostelium discoideum
  • ctxB protein, Dictyostelium discoideum
  • ras GTPase-Activating Proteins
  • Actomyosin
  • Myosin Type II