Environmental conditions control rRNA transcription. Previously, we found that serum and glucose deprivation induces KDM2A-mediated H3K36me2 demethylation in the rRNA gene (rDNA) promoter and reduces rRNA transcription in the human breast cancer cell line MCF-7. However, the molecular mechanism and biological significance are still unclear. In the present study, we found that glucose starvation alone induced the KDM2A-dependent reduction of rRNA transcription. The treatment of cells with 2-deoxy-d-glucose, an inhibitor of glycolysis, reduced rRNA transcription and H3K36me2 in the rDNA promoter, both of which were completely dependent on KDM2A in low concentrations of 2-deoxy-d-glucose, that is, mild starvation conditions. The mild starvation induced these KDM2A activities through AMP-activated kinase (AMPK) but did not affect another AMPK effector of rRNA transcription, TIF-IA. In the triple-negative breast cancer cell line MDA-MB-231, the mild starvation also reduced rRNA transcription in a KDM2A-dependent manner. We detected KDM2A in breast cancer tissues irrespective of their estrogen receptor, progesterone receptor, and HER2 status, including triple-negative cancer tissues. In both MCF-7 and MDA-MB-231 cells, mild starvation reduced cell proliferation, and KDM2A knockdown suppressed the reduction of cell proliferation. These results suggest that under mild glucose starvation AMPK induces KDM2A-dependent reduction of rRNA transcription to control cell proliferation.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.