Optical and thermal characteristics of carbonaceous aerosols measured at an urban site in Gwangju, Korea, in the winter of 2011

J Air Waste Manag Assoc. 2016 Feb;66(2):151-63. doi: 10.1080/10962247.2015.1101031.

Abstract

Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m(-3), respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, "stagnant PM" and "long-range transport PM" events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m(2) g(-1), whereas the efficiency attributed to OC (σOC) was 1.8 m(2) g(-1) at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between "stagnant PM" and "long-range transport PM" events. More abundant light absorbing OC was observed during the stagnant PM event.

MeSH terms

  • Aerosols / analysis*
  • Air Pollutants / analysis*
  • Carbon / analysis*
  • Cities
  • Environmental Monitoring / methods*
  • Particulate Matter / analysis
  • Periodicity
  • Republic of Korea
  • Seasons
  • Weather

Substances

  • Aerosols
  • Air Pollutants
  • Particulate Matter
  • Carbon