Regulation of Liver Metabolism by Autophagy

Gastroenterology. 2016 Feb;150(2):328-39. doi: 10.1053/j.gastro.2015.09.042. Epub 2015 Oct 8.

Abstract

Intracellular components must be recycled for cells to maintain energy and ensure quality control of proteins and organelles. Autophagy is a highly conserved recycling process that involves degradation of cellular constituents in lysosomes. Although autophagy regulates a number of cell functions, it was first found to maintain energy balance in liver cells. As our understanding of autophagy has increased, we have found its connections to energy regulation in liver cells to be tight and complex. We review 3 mechanisms by which hepatic autophagy monitors and regulates cellular metabolism. Autophagy provides essential components (amino acids, lipids, and carbohydrates) required to meet the cell's energy needs, and it also regulates energy supply by controlling the number, quality, and dynamics of the mitochondria. Finally, autophagy also modulates levels of enzymes in metabolic pathways. In light of the multiple ways in which autophagy participates to control liver metabolism, it is no surprise that dysregulation of autophagy has been associated with metabolic diseases such as obesity, diabetes, or metabolic syndrome, as well as liver-specific disorders such as fatty liver, nonalcoholic steatohepatitis, and hepatocellular carcinoma. We discuss some of these connections and how hepatic autophagy might serve as a therapeutic target in common metabolic disorders.

Keywords: Cancer; Chaperone-Mediated Autophagy; Lipophagy; Lysosome; Macroautophagy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autophagy*
  • Energy Metabolism*
  • Humans
  • Liver / metabolism*
  • Liver / pathology
  • Lysosomes / metabolism*
  • Lysosomes / pathology
  • Metabolic Diseases / metabolism
  • Metabolic Diseases / pathology
  • Mitochondria, Liver / metabolism*
  • Mitochondria, Liver / pathology
  • Mitochondrial Dynamics