Cognitive impairment is very common in chronic kidney disease (CKD) and is strongly associated with increased mortality. This review article will discuss the pathophysiology of cognitive impairment in CKD, as well as the effect of dialysis and transplantation on cognitive function. In CKD, uremic toxins, hyperparathyroidism and Klotho deficiency lead to chronic inflammation, endothelial dysfunction and vascular calcifications. This results in an increased burden of cerebrovascular disease in CKD patients, who consistently have more white matter hyperintensities, microbleeds, microinfarctions and cerebral atrophy on magnetic resonance imaging scans. Hemodialysis, although beneficial in terms of uremic toxin clearance, also contributes to cognitive decline by causing rapid fluid and osmotic shifts. Decreasing the dialysate temperature and increasing total dialysis time limits these shifts and helps maintain cognitive function in hemodialysis patients. For many patients, kidney transplantation is the preferred treatment modality, because it reverses the underlying mechanisms causing cognitive impairment in CKD. These positive effects have to be balanced against the possible neurotoxicity of infections and immunosuppressive medications, especially glucocorticosteroids and calcineurin inhibitors. A limited number of studies have addressed the overall effect of transplantation on cognitive function. These have mostly found an improvement after transplantation, but have a limited applicability to daily practice because they have only included relatively young patients.